A Primer on Proving 

In a classroom setting, a problem that starts off with “prove this theorem” is an exercise in which students are assured that what they are working on can be proven by the word “theorem” in the problem statement.  Neither teachers nor mathematicians call a statement  “theorem” unless it’s been proved.  “Prove this theorem” problems are intended to provide exercise in practicing logic, using definitions, and mastering facts. 

At the professional level of mathematics, “proving” is more often about trying to find out if a statement or proposition is always true, under what circumstances it is true, or discovering that it is false.  The process hones mathematical intuition and keeps the mathematician involved on the edge of knowledge.  A teacher who is trying to simulate this situation will use the instruction: “prove the assertion or find a counterexample”. Exercises with these instructions develop a deeper understanding of the process of discovering facts rather than being told them.  These exercises also illustrate the discovery process in science and math.

There is, of course, formal logic involved in a formal proof and if the matter to be proven is done in a formal way, the process of proving can be quite tedious.  It is customary to use an outline or sketch of the formal process – and this convention is why students have a lot of trouble knowing when or even if the job is done.  In this section we’ll be working on the process of proving in a less formal way.

Coming up with a proof involves “organized doodling”:

reviewing definitions in the assertion and reviewing related facts, 

making sketches, 

researching to find related facts, and

performing some calculations.

Someone who is learning to write proofs needs to know a bit of logic and to practice a lot.  One excellent way to learn how to prove is to read other people’s proofs with the thought of comprehending the logical structure underlying the words. 

We’ll start with some facts that you may use without proving them and then we’ll look at some types of proofs and some examples of each type.

Real Numbers and Arithmetic Properties

Let a, b, c, and d be real numbers.  The following properties are true.

1.
Commutative properties:

a + b = b + a and ab = ba

2.
Associative properties:

a + (b + c) = (a + b) + c and  a(bc) = (ab)c

3.
Identity properties:





The additive identity is 0:  0 + a = a + 0.



The multiplicative identity is 1: 1(a) = a(1).



Each of these identities is unique.

4.
Inverse properties:

For each real number a, there is a real number –a, 

called  the additive inverse, with a +( –a) = (–a) + a = 0.

For each nonzero real number a, there is a real number 1/a, 

called the multiplicative inverse, with a (1/a) = (1/a)a = 1.

Each of these inverses is unique.

5.
Distributive property:

a(b + c) = ab + ac.

6.
Equality properties:

Addition:
a = b  (   a + c = b + c

Multiplication:
a = b  (   ac = bc

Substitution
a = b  (   a may be used in place of b as needed

Square root:
a > b ( 1  (   a ½  > b ½  

(note: this is defined to be the positive square root)

7.
The trichotomy property of real numbers:  when comparing two real numbers



exactly one of these statements is true:  a = b, a > b, or a < b.

8.
The Sum Inequality:  If a, b, and c are positive real numbers and a = b + c, then 



a > b and a > c.

You may use these facts freely when you are working on proofs.

Facts from logic
1.
The logical equivalence of a conditional and it’s contrapositive:
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for example:


If Steve is 18 or older, then Steve is legally an adult.


If Steve is not legally an adult, then Steve is not 18 or older.



or:  If Steve is legally a child, then he is under 18 years old.


These are logically equivalent, which means they have the same truth table 
outcomes.

2.
Transitivity of implication:



[image: image2.wmf](PQQR)(PR)

®Ù®®®



for example:


If A is a square, then A has 4 sides.  If a polygon has 4 sides, then it is a 
quadrilateral.  Thus A is a quadrilateral.

3.
The Law of the Excluded Middle:
Either P or ~P is true.  


not both nor neither.

Style Sheet

1.
Be sure you understand what is to be proved.  Rewrite the proposition or theorem in manglish* at the very least.  If you can, rewrite the proposition or theorem in a conditional format so that you can focus on the hypotheses and the conclusion separately.  See the text of  the counterexample that follows for an illustration of how important this can be.   

2.
Assemble the facts that you think you’ll need, especially the definitions or theorems proved previously that are on the same subject.  You need to consider your audience with respect to inserting definitions and the text of a theorem into the proof you are writing.  An experienced audience needs less information than a novice reader.  A homework proof needs plenty of explaining and few assumptions about what “everybody knows”.

3.
Choose the type of proof you want to try first.  Don’t get too fond of any style or type; if a direct proof gets very, very messy sometimes a change to contradiction or contrapositive can help.

4.
Proofs are usually written as prose with complete sentences, correct spelling, and standard paragraph development.

5.
If you need to use a pronoun in order to write a complete sentence, use “we”.  This choice assumes that you, as the author, and your reader are following the logic of the argument together.

*a contraction of Math and English – like Spanglish or Franglais.  

Used often in math classes.

6.
If you need to use equations or inequalities in your sentences, fit them in as clauses.  They should be grammatically correct as math expressions and as clauses.  Often, symbols or variables are used as the subject of a sentence.  These symbols or variables are to be regarded as pronouns and should have a sentence that introduces each of them prior to being used.

For example:  “X is the set of all natural numbers greater than or equal to 2.  X can be divided into two subsets: the prime numbers and the composite numbers.”  Using the second sentence without having the first sentence in place will inevitably cause misunderstandings for your readers. 

7. Be sure to choose an appropriate object as an illustration or subject.  If you are proving the Pythagorean Theorem, you will need a right triangle, not just any triangle.  If you are proving a statement about all triangles, then you must chose a triangle that represents all triangles and not some special subset of them.  This is the idea behind the phrase: “Let A be an arbitrary triangle” or “Let A be a right triangle”.  Look for ideas in the hypothesis of your conditional statement to guide your choices.**

8.
At or near the beginning of a proof, select the appropriate objects with which to work.  If your hypothesis uses natural numbers and you need three of them, choose three arbitrary natural numbers and call them something like x, y, and z.  If you need a right triangle chose an arbitrary one – which means the only facts you have is that the object is a triangle, one angle measures ninety degrees, and the side across from this angle is called the hypotenuse.

9. Indicate the end of your argument with QED or ( or a phrase like “This completes the proof”.

Note that your proofs will be graded using this style sheet as a standard.

** Be extremely cautious of using an illustration as a substitute for a proof.  Pictures can help will comprehension or can be disastrously misleading…an example of an acceptable “picture proof” is the Pythagorean Theorem in the lecture – note how carefully the words are chosen, though.  An example of a purely disastrous “proof” that went astray because of it’s picture is also in the lecture.

Proof Formats

Direct Reasoning:

Start with the hypothesis, use definitions and previously established facts in a straightforward logical string right to the conclusion.

a formal example: 
 

[(P ( Q)((Q ( R) ((R (W)] ( (P(W) 

another example:

If Les is taller than Pat and Pat is taller than Lee and Lee is taller than Lucky, then Les is the tallest of these four people

another example:

If  x, m, n, r. and y are real numbers and x – 1 = m and m = n + y and 

y = r – 1, then x = n + r.

There’s a difference between the last two examples, though.  I’ve IMPLICITLY used some properties of equality that are separate from the logic in the last example.  

What are these properties?

An example of a direct proof

The Pythagorean Theorem

Given a right triangle with sides of length A and B and hypotenuse of length C, 

A2 + B2 = C2.
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You are to “see” that each shape is a square.

The smaller square cuts each side of the 

larger square into pieces a + b.  We’ll

call the side of the smaller square c.

The area formula for a square is

½ side 1 x side 2.

You may add and subtract areas at will.

If you subtract the smaller area from the

larger area you get the area of the 4 right 

triangles.
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** This particular version is in the style usually used on the Indian subcontinent 1500 years ago.  Along this line of thought, Joseph Rotman notes that Elisha Scott Loomis published a book of 370 proofs of the Pythagorean Theorem in 1940 

(see p. 51 in Journey into Mathematics ).

Theorem

The least distance from a point P to a line L, not containing P, is the perpendicular distance PQ.

Proof
Let P and L be as stated above and suppose Q is a point on L with PQ perpendicular to L.

Let R be another point on L, distinct from Q.  Connect R and P to make the line segment PR and note that triangle PQR is a right triangle.  By the Pythagorean Theorem, we have the following equation:


QR2 + PQ2 = PR2.

This means that PQ2 < PR2 which means that PQ < PR.  Since PR is arbitrary, the theorem is proven.(
Do you see where I’ve used the arithmetic properties on page 2, #6?
Proof by Contradiction and Contraposition:

In order to prove some conditional statement 
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:  assume not-P is true and then make logical and correct deductions from that assumption. When you end up with a statement that is logically derived and totally contradicts a known fact (X is always a true statement)  then you may announce that not-P cannot be true.  (As it is a precept of logic that a statement is either true or false, you know that P is true.)  

On a more formal note, proofs by the contrapositive can work well because a conditional statement and it’s contrapositive are logically equivalent.  This means that proving not-Q implies not-P is the same as proving directly that P implies Q.

Both of these proceed by negating the second clause and working from that point.

An example of a proof by contradiction
Theorem

If x is a real number and x2 = 0, then x is zero.
Proof

Let x be any real number and x2 = 0.

Suppose x ( 0.

Since x is not zero*, we may use x as a divisor and divide both sides of the equation x2 = 0 by x.

On the left hand side x2  (  x = x and on the right hand side  0 (  x = 0.

In other words, by dividing by our non-zero x, we find that x = 0.  

This contradicts our supposition that x ( 0, and we must conclude that x is zero. (
* Division by zero is not allowed while division by a non-zero number is.  Depending on the level of your audience, you may or may not need to review this point thoroughly.  For an audience of math sophisticates, you might even omit any mention of it and assume that OF COURSE “everybody knows that”.  (see Style sheet #2)

Another example of a proof by contrapositive with an additional twist

Theorem:

A counting number is odd if and only if its square is odd.
Strategy:
If and only if statements are two conditional statements compressed into one sentence.  You have to unpack them before you can prove them.

Unpacked theorem:
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If a counting number is odd, then its square is odd.
(O 
[image: image6.wmf]®

 OS) – and – 


If the square of a counting number is odd, then the number itself is odd. (OS 
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We have to prove both of these statements.  Note that you’re expected to know that an even number is 2x where x is a natural number and an odd number is 2x ( 1 or 2p + 1 where p is a natural number.

Proof of statement 1:

[
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Let n be an odd counting number.
Thus n = 2p + 1 for some whole number p.

The square of n is, then, 
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.  The last representation shows that the square is odd.  (
This is a direct proof.

Proof of statement 2:
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[Contradict the conclusion. ]

Suppose the number, n, is even (which is to say “not odd”).  Then n = 2x for some natural number x.  Therefore, 
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…which says that the square of the number is even.  We have shown that the square is not odd (i.e. even). (
This is a proof by contrapositive.

Elimination Proofs
If, in looking at an assertion, you find that the list of outcomes is finite, you may eliminate all the false ones in your proof.  If there’s only one outcome left, it is, then, the correct or true conclusion.

Suppose you have two segments and you are comparing their lengths A and B.  As length is a real number you know, then, that the lengths are equal or one is shorter than the other.  If you can show that A is not equal to B and A is not less than B, you may then conclude without further discussion that A is greater than B.

We will be doing an examples of this later in the course.

Induction Proofs:

The procedure is to 

demonstrate the assertion is true for the smallest natural number that is specified, 

assume that the assertion is true for some natural number, and 

demonstrate that the assertion is true for the next natural number.  

The demonstration part of the proof is usually algebraic and involves resisting the temptation to work on both sides of the comparative symbol.  Note that the work in the examples is exclusively on a single side of the inequality or equality. 

Induction as a method of finding out truths or illustrating patterns is an excellent teaching tools to have in your repertoire. 

An example of a proof by induction

Theorem

The number 3 is a factor of 22n – 1 for all natural numbers n.

Proof

Let Pn  = 22n – 1.

P1 = 4 – 1 = 3 and 3 is a factor of itself.

We will assume that  Pk is true, which is to say that 3 is a factor of  22k – 1. 

(This means that 22k – 1= 3x for some number x.)

We must now show that 3 is a factor of Pk+1 = 22(k+1) – 1.**

22(k+1) – 1 =  

22k+2 – 1 = 

22k22 – 1 =

4(22k) – 4 + 3 =

4(22k – 1) + 3 =

4(3x) + 3 =

3(4x + 1). (
** the strategy at this point is algebraic: show that Pk+1 is true by using algebra in such a way that our hypothesis that Pk is true can be used.  Note that the spacing of the body of this proof is somewhat non-standard.  In reality most of the new lines would be run continuously as “text” in situation other than “teaching mode”.

Another example of a proof by induction
Prove that  n! ( nn   **
Proof:

The statement is true for n = 1 because 1! = 1 and 11 = 1 so that 1! ( 11.

Assume that the statement is true for n = k : k! ( kk

Show that it is true for n = k + 1

(k + 1)! = (k + 1)k!

Since k! ( kk is true by assumption,  

we have that (k + 1)! = (k + 1)k! ( (k + 1)kk ( (k + 1)(k + 1)k = (k + 1)k + 1  (
Be sure to understand the reasoning and the choices that make every step of this work out.  Often it is a good idea to write out what the goal is – in this case we wanted to show that (k + 1)! ( (k + 1)k + 1 .  The procedure is to work with the expression (k + 1)! exclusively until the goal is reached.

** you’ll need to do some doodling to figure out what this is saying…
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Finding a counterexample

To demonstrate or prove that a claim is false, we need to find one object that meets all the hypotheses and doesn’t demonstrate the conditions in the conclusion.  This process is called finding a counterexample and finding it uses “creative doodling”.

In this class we’ll need some facts from College Algebra, some facts about real number arithmetic, and some of the information from your previous math courses, including high school courses.  You’ll need to use these facts to figure out whether or not a conclusion is true.

An instance of finding a counterexample
Prove or find a counterexample:

P(n) = n2 + n + 11 is prime for every natural number n.
The first thing to do is spend a little time thinking about it and working with the conjecture creatively.  This includes

(
Review the definition of prime numbers:

A natural number greater than or equal to two is prime if and only if it has no factors other than one or itself.  It cannot be factored into a product of numbers bigger than one and smaller than itself.

(
Rewriting the conjecture in implication form:

If n is a natural number, then P(n) is a prime number.

(
Trying out a few natural numbers:


P(1) = 13
ok


P(2) = 17
ok

[Some conjectures might be best understood by making some sketches.  The form of this conjecture suggests sample calculations]

(
A bit of wondering or internal chatting:

A natural thought might be to ask if the formula is incorrect because it’s not giving us 2 or 3 or 5, the smaller prime numbers.  Look at the statement again.  It does NOT say that the formula generates ALL prime numbers, it just says that 

if you use a natural number the answer is a prime number.  (#1 stylesheet)

(
Keep playing with it.  Do you think you could factor the formula into linear factors?  If you can, then it’s not true.  Try that and keep on doing some calculations.



Try P(10)



P(10) = 121 = 112 .

So n = 10 is a counterexample because 121 is NOT a prime number. And the assertion is NOT a theorem
Another example:


Prove or find a counterexample.

If an integer is a multiple of both 10 and 15, then it is a multiple of 150.

First, recall that a multiple is defined to be a natural number times a natural number…no fractions or negatives allowed.  

Next recall that there’s a number called the least common multiple.  There’s lots of ways to find the lcm.  You may need to review them.    The least common multiple of x and y is denoted (x, y).
(10, 15, 150) = 30 and note that 30 is NOT a multiple of 150 even though it is a multiple of both 10 and 15.  We found a counterexample because 30 meets the hypothesis and 
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